A predictive study of student satisfaction in online education programs
DOI:
https://doi.org/10.19173/irrodl.v14i1.1338Keywords:
Interaction, Satisfaction, Self-regulation, Internet-self efficacy, Online learning, RegressionAbstract
This paper is intended to investigate the degree to which interaction and other predictors contribute to student satisfaction in online learning settings. This was a preliminary study towards a dissertation work which involved the establishment of interaction and satisfaction scales through a content validity survey. Regression analysis was performed to determine the contribution of predictor variables to student satisfaction. The effects of student background variables on predictors were explored. The results showed that learner-instructor interaction, learner-content interaction, and Internet self-efficacy were good predictors of student satisfaction while interactions among students and self-regulated learning did not contribute to student satisfaction. Learner-content interaction explained the largest unique variance in student satisfaction. Additionally, gender, class level, and time spent online per week seemed to have influence on learner-learner interaction, Internet self-efficacy, and self-regulation.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License. The copyright for all content published in IRRODL remains with the authors.
This copyright agreement and usage license ensure that the article is distributed as widely as possible and can be included in any scientific or scholarly archive.
You are free to
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms below:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.