Potentials and Implications of ChatGPT for ESL Writing Instruction

Authors

DOI:

https://doi.org/10.19173/irrodl.v25i3.7820

Keywords:

artificial intelligence, artificial neural network, L2 writing, AI applications, chatbots

Abstract

The release of ChatGPT has marked the dawn of a new information revolution that will transform how people communicate and make meaning. However, to date, little is known about the implications of ChatGPT for L2 composition instruction. To address this gap, the present study uses a systematic review design to synthesize available research on the educational potentials of ChatGPT as an instructional assistant, outline the implications of these potentials for L2 writing instruction, and discuss their practical applications. The findings, based on a meta-analysis of 42 research articles, demonstrate that ChatGPT can enhance L2 writing instruction by boosting learners’ motivation, automating instructional tasks, and offering instantaneous, personalized feedback to learners. These findings have important implications for harnessing the instructional potential of generative AI in L2 writing classes.

References

Ali, J. K. M., Shamsan, M. A. A., Hezam, T. A., & Mohammed, A. A. (2023). Impact of ChatGPT on learning motivation: Teachers and students’ voices. Journal of English Studies in Arabia Felix, 2(1), 41–49. https://doi.org/10.56540/jesaf.v2i1.51

Altamimi, A. B. (2023, August). Effectiveness of ChatGPT in essay autograding. In 2023 International Conference on Computing, Electronics & Communications Engineering (iCCECE) (pp. 102–106). IEEE. https://doi.org/10.1109/iCCECE59400.2023.10238541

Athanassopoulos, S., Manoli, P., Gouvi, M., Lavidas, K., & Komis, V. (2023). The use of ChatGPT as a learning tool to improve foreign language writing in a multilingual and multicultural classroom. Advances in Mobile Learning Educational Research, 3(2), 818–824. https://doi.org/10.25082/AMLER.2023.02.009

Ibrahim. K (2023). Using AI-based classifiers to detect AI-generated texts in ESL composition. Language Testing in Asia,13, 46. https://doi.org/10.1186/s40468-023-00260-2

Baidoo-anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1337500n

Barrot, J. S. (2023). Using ChatGPT for second language writing: Pitfalls and potentials. Assessing Writing, 57, 100745. https://doi.org/10.1016/j.asw.2023.100745

Baskara, R., & Mukarto, M. (2023). Exploring the implications of ChatGPT for language learning in higher education. Indonesian Journal of English Language Teaching and Applied Linguistics, 7(2), 343–358. https://files.eric.ed.gov/fulltext/EJ1391490.pdf

Bonner, E., Lege, R., & Frazier, E. (2023). Large language model-based artificial intelligence in the language classroom: Practical ideas for teaching. Journal of Teaching English with Technology, 23(1), 23–41. http://dx.doi.org/10.56297/BKAM1691/WIEO1749

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam P., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., … & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

https://doi.org/10.48550/arXiv.2005.14165

Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement learning from human preferences. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Advances in Neural Information Processing Systems: Vol. 30 (pp. 4299–4307). https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf

Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228–239. https://doi.org/10.1080/14703297.2023.2190148

Dai, W., Lin, J., Jin, H., Li, T., Tsai, Y.-S., Gašević, D., & Chen, G. (2023, July). Can large language models provide feedback to students? A case study on ChatGPT. In 2023 IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 323–325). IEEE. https://doi.org/10.1109/ICALT58122.2023.00100

Darvishi, A., Khosravi, H., Abdi, S., Sadiq, S., & Gašević, D. (2022, June). Incorporating training, self-monitoring and AI-assistance to improve peer feedback quality. In Proceedings of the ninth ACM conference on learning@ scale (pp. 35-47). https://doi.org/10.1145/3491140.3528265

Francke, E., & Alexander, B. (2019). The potential influence of artificial intelligence on plagiarism a higher education perspective. In Proceedings of the European Conference on the Impact of Artificial Intelligence and Robotics (pp. 131–140). EM Normandie Business School, Oxford. https://doi.org/10.1186/s40468-023-00260-2

Fuchs, K. (2023). Exploring the opportunities and challenges of NLP models in higher education: Is ChatGPT a blessing or a curse? Frontiers in Education, 8, 1–4. https://doi.org/10.3389/feduc.2023.1166682

Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2023). Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. NPJ Digital Medicine, 6, article 75. https://doi.org/10.1038/s41746-023-00819-6

Han, J., Yoo, H., Myung, J., Kim, M., Lee, T. Y., Ahn, S.-Y., & Oh, A. (2023). Exploring student-ChatGPT dialogue in EFL writing education. In Thirty-Seventh Annual Conference on Neural Information Processing Systems. Neural Information Processing Systems Foundation. https://gaied.org/neurips2023/files/19/19_paper.pdf

Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022). “I think this is the most disruptive technology”: Exploring sentiments of ChatGPT early adopters using Twitter data. arXiv. https://doi.org/10.48550/arXiv.2212.05856

Hawanti, S., & Zubaydulloevna, K. M. (2023). AI chatbot-based learning: Alleviating students’ anxiety in English writing classroom. Bulletin of Social Informatics Theory and Application, 7(2), 182–192. https://doi.org/10.31763/businta.v7i2.659

Hirunyasiri, D., Thomas, D. R., Lin, J., Koedinger, K. R., & Aleven, V. (2023). Comparative analysis of GPT-4 and human graders in evaluating praise given to students in synthetic dialogues. arXiv. https://doi.org/10.48550/arXiv.2307.02018

Hong, W. C. H. (2023). The impact of ChatGPT on foreign language teaching and learning: Opportunities in education and research. Journal of Educational Technology and Innovation, 5(1). https://jeti.thewsu.org/index.php/cieti/article/view/103

Hu, K. (2023, February 2). ChatGPT sets record for fastest-growing user base: Analyst note. Reuters. https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/

Huang, J., & Li, S. (2023). Opportunities and challenges in the application of ChatGPT in foreign language teaching. International Journal of Education and Social Science Research, 6(4), 75–89. http://dx.doi.org/10.37500/IJESSR.2023.6406

Imran, M., & Almusharraf, N. (2023). Analyzing the role of ChatGPT as a writing assistant at higher education level: A systematic review of the literature. Contemporary Educational Technology, 15(4), ep464. https://doi.org/10.30935/cedtech/13605

Jia, Q., Young, M., Xiao, Y., Cui, J., Liu, C., Rashid, P., & Gehringer, E. (2022). Insta-reviewer: A data-driven approach for generating instant feedback on students’ project reports. Proceedings of the 15th International Conference on Educational Data Mining (pp. 5–16). International Educational Data Mining Society. https://zenodo.org/doi/10.5281/zenodo.6853098

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education [Position paper]. Department of Educational Sciences, Technische Universität München. https://www.edu.sot.tum.de/fileadmin/w00bed/hctl/_my_direct_uploads/ChatGPT_for_Good_.pdf

Khalil, M., & Er, E. (2023). Will ChatGPT get you caught? Rethinking of plagiarism detection. arXiv. https://doi.org/10.48550/arXiv.2302.04335

Koltovskaia, S. (2020). Student engagement with automated written corrective feedback (AWCF) provided by Grammarly: A multiple case study. Assessing Writing, 44, 100450.

King, M. R., & ChatGPT. (2023). Editorial: A conversation on artificial intelligence, chatbots, and plagiarism in higher education. Cellular and Molecular Bioengineering, 16, 1–2. https://doi.org/10.1007/s12195-022-00754-8

Kınık, B., & Çetin, H. (2024). Human vs. AI: The use of ChatGPT in writing assessment. In Z. Çetin Köroğlu & A. Çakır (Eds.), Fostering foreign language teaching and learning environments with contemporary technologies (pp. 194–215). IGI Global. https://doi.org/10.4018/979-8-3693-0353-5.ch009

Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. RELC Journal, 54(2), 537–550. https://doi.org/10.1177/00336882231162868

Kortemeyer, G. (2023). Performance of the pre-trained large language model GPT-4 on automated short answer grading. arXiv. https://doi.org/10.48550/arXiv.2309.09338

Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the classroom: A gateway to creating an inclusive learning environment. Journal of Economic Education, 31(1), 30–43. https://doi.org/10.1080/00220480009596759

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press. https://doi.org/10.1017/CBO9780511815355

Ljujić, B., Miljković, J., & Grozdić, V. (2023). ChatGPT and academic writing in higher education. In M. Radulović & M. Trajković, Towards a more equitable education: From research to change (pp. 104–109). Institute for Educational Research. https://reff.f.bg.ac.rs/handle/123456789/5759

Loem, M., Kaneko, M., Takase, S., & Okazaki, N. (2023). Exploring effectiveness of GPT-3 in grammatical error correction: A study on performance and controllability in prompt-based methods. arXiv. https://doi.org/10.48550/arXiv.2305.18156

Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Library Hi Tech News. https://dx.doi.org/10.2139/ssrn.4333415

MacNeil, S., Tran, A., Mogil, D., Bernstein, S., Ross, E., & Huang, Z. (2022, August). Generating diverse code explanations using the GPT-3 large language model. Proceedings of the ACM Conference on International Computing Education Research, 2, 37–39. https://doi.org/10.1145/3501709.3544280

Marzuki, Widiati, U., Rusdin, D., Darwin, & Indrawati, I. (2023). The impact of AI writing tools on the content and organization of students’ writing: EFL teachers’ perspective. Cogent Education, 10(2), 2236469. https://doi.org/10.1080/2331186X.2023.2236469

Mhlanga, D. (2023). OpenAI in education, the responsible and ethical use of ChatGPT towards lifelong learning. SSRN. http://dx.doi.org/10.2139/ssrn.4354422

OpenAI. (n.d.-b). Overview. Retrieved January 5, 2024, from https://openai.com/chatgpt

Pardos, Z. A., & Bhandari, S. (2023). Learning gain differences between ChatGPT and human tutor generated algebra hints. arXiv. https://doi.org/10.48550/arXiv.2302.06871

Qadir, J. (2022). Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. TechRxiv. https://doi.org/10.36227/techrxiv.21789434.v1

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. Retrieved June 30, 2023, from https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9. https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(9), 5783 https://doi.org/10.3390/app13095783

Rakhmonov, I. U., & Kurbonova, R. S. (2023). The pedagogical principles and effectiveness of utilizing ChatGPT for language learning. Research and Education, 2(9), 226–243. https://researchedu.org/index.php/re/article/view/4899

Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning and Teaching, 6(1), 342–363. https://doi.org/10.37074/jalt.2023.6.1.9

Shaikh, S., Yayilgan, S. Y., Klimova, B., & Pikhart, M. (2023). Assessing the usability of ChatGPT for formal English language learning. European Journal of Investigation in Health, Psychology, and Education, 13(9), 1937–1960. https://doi.org/10.3390/ejihpe13090140

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., Radford, A., Krueger, G., Kim, J. W., Kreps, S., McCain, M., Newhouse, A., Blazakis, J., McGuffie, K., & Wang, J. (2019). Release strategies and the social impacts of language models. arXiv. https://doi.org/10.48550/arXiv.1908.09203

Sridhar, P., Doyle, A., Agarwal, A., Bogart, C., Savelka, J., & Sakr, M. (2023). Harnessing LLMs in curricular design: Using GPT-4 to support authoring of learning objectives. arXiv. https://doi.org/10.48550/arXiv.2306.17459

Susnjak, T. (2022). ChatGPT: The end of online exam integrity? arXiv. https://doi.org/10.48550/arXiv.2212.09292

Üstünbaş, Ü. (2024). EFL learners’ views about the use of artificial intelligence in giving corrective feedback on writing: A case study. In Z. Çetin Köroğlu & A. Çakır (Eds.), Fostering foreign language teaching and learning environments with contemporary technologies (pp. 115–133). IGI Global. https://doi.org/10.4018/979-8-3693-0353-5.ch006

Wambsganss, T., Janson, A., & Leimeister, J. M. (2022). Enhancing argumentative writing with automated feedback and social comparison nudging. Computers & Education, 191, 104644. https://doi.org/10.1016/j.compedu.2022.104644

Wang, Y., Derakhshan, A., Pan, Z., & Ghiasvand, F. (2023). Chinese EFL teachers’ writing assessment feedback literacy: A scale development and validation study. Assessing Writing, 56, 100726. https://doi.org/10.1016/j.asw.2023.100726

Wulandari, F., Astuti, M. T., & Marhamah, M. (2024). Enhancing writing literacy teachers through AI development. Jurnal Onoma: Pendidikan, Bahasa, dan Sastra, 10(1), 246–256. https://doi.org/10.30605/onoma.v10i1.3175

Yan, D. (2023). Impact of ChatGPT on learners in a L2 writing practicum: An exploratory investigation. Education and Information Technologies, 28, 13943–13967. https://doi.org/10.1007/s10639-023-11742-4

Yeadon, W., Inyang, O.-O., Mizouri, A., Peach, A., & Testrow, C. (2022). The death of the short-form physics essay in the coming AI revolution. arXiv. https://doi.org/10.48550/arXiv.2212.11661

Yoon, S.-Y., Miszoglad, E., & Pierce, L. R. (2023). Evaluation of ChatGPT feedback on ELL writers’ coherence and cohesion. arXiv. https://doi.org/10.48550/arXiv.2310.06505

Young, J. C., & Shishido, M. (2023). Investigating OpenAI’s ChatGPT potentials in generating chatbot’s dialogue for English as a foreign language learning. International Journal of Advanced Computer Science and Applications, 14(6). https://doi.org/10.14569/IJACSA.2023.0140607

Published

2024-08-26

How to Cite

Ibrahim, K., & Kirkpatrick, R. (2024). Potentials and Implications of ChatGPT for ESL Writing Instruction. The International Review of Research in Open and Distributed Learning, 25(3), 394–409. https://doi.org/10.19173/irrodl.v25i3.7820