A Construct Revalidation of the Community of Inquiry Survey: Empirical Evidence for a General Factor Under a Bifactor Structure
DOI:
https://doi.org/10.19173/irrodl.v22i4.5587Keywords:
community of inquiry, teaching presence, social presence, cognitive presence, bifactor model, construct revalidationAbstract
The study revisited the community of inquiry (CoI) instrument for construct revalidation. To that end, the study used confirmatory factor analysis (CFA) to examine four competing models (unidimensional, correlated-factor, second-order factor, and bifactor models) on model fit statistics computed using parameter estimates from a statistical estimator for ordinal categorical data. The CFA identified as the optimal structure the bifactor model where all items loaded on their intended domains and the existence of the general factor was supported, essentially evidence of construct validity for the instrument. The study further examined the bifactor model using mostly model-based reliability measures. The findings confirmed the contributions of the general factor to the reliability of instrument scores. The study concluded with validity and reliability evidence for the bifactor model, supported the model as a valid and reliable representation of the CoI instrument and a fuller representation of the CoI theoretical framework, and recommended its use in CoI-related research and practice in online education.
References
Arbaugh, B., Cleveland-Innes, M., Diaz, S., Garrison, D. R., Ice, P., Richardson, J. C., & Swan, K. P. (2008). Developing a community of inquiry instrument: Testing a measure of the community of inquiry framework using a multi-institutional sample. The Internet and Higher Education, 11(3–4), 133–136. https://doi.org/10.1016/j.iheduc.2008.06.003
Bangert, A. W. (2009). Building a validity argument for the community of inquiry survey instrument. The Internet and Higher Education, 12(2), 104–111. https://doi.org/10.1016/j.iheduc.2009.06.001.
Byrne, B. M. (2010). Structural equation modeling with AMOS (2nd ed.). Routledge.
Caskurlu, S. (2018). Confirming the subdimensions of teaching, social, and cognitive presences: A construct validity study. The Internet and Higher Education, 39, 1–12. https://doi.org/10.1016/j.iheduc.2018.05.002
Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J. P., & Zhang, Z. (2012). Modeling general and specific variance in multifaceted constructs: A comparison of the bifactor model to other approaches. Journal of Personality, 80(1), 219–251. https://doi.org/10.1111/j.1467-6494.2011.00739.x
DeMars, C. E. (2013). A tutorial on interpreting bifactor model scores. International Journal of Testing, 13, 354–378. https://doi.org/10.1080/15305058.2013.799067
Dempsey, P. R., & Zhang, J. (2019). Re-examining the construct validity and causal relationships of teaching, cognitive, and social presence in community of inquiry framework. Online Learning, 23(1), 62–79. http://dx.doi.org/10.24059/olj.v23i1.1419
Díaz, S. R., Swan, K., Ice, P., & Kupczynski, L. (2010). Student ratings of the importance of survey items, multiplicative factor analysis, and the validity of the community of inquiry survey. The Internet and Higher Education, 13(1–2), 22–30. https://doi.org/10.1016/j.iheduc.2009.11.004
DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23(3), 225–241. https://doi.org/10.1177/073428290502300303
Garrison, D. R., Anderson, T., & Archer, W. (2000). Critical inquiry in a text-based environment: Computer conferencing in higher education. The Internet and Higher Education, 2(2–3), 87–105. https://doi.org/10.1016/S1096-7516(00)00016-6
Garrison, D. R., & Arbaugh, J. B. (2007). Researching the community of inquiry framework: Review, issues, and future directions. The Internet and Higher Education, 10, 157–172. https://doi.org/10.1016/j.iheduc.2007.04.001
Garrison, D. R., Cleveland-Innes, M., & Fung, T. S. (2010). Exploring causal relationships among teaching, cognitive and social presence: Student perceptions of the community of inquiry framework. The Internet and Higher Education, 13(1-2), 31–36. https://doi.org/10.1016/j.iheduc.2009.10.002
Gignac, G. E., & Kretzschmar, A. (2017). Evaluating dimensional distinctness with correlated-factor models: Limitations and suggestions. Intelligence, 62, 138–147. https://doi.org/10.1016/j.intell.2017.04.001
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
Kovanović, V., Joksimović, S., Poquet, O., Hennis, T., Čukić, I., de Vries, P., Hatala, M., Dawson, S., Siemens, G., & Gašević, D. (2018). Exploring communities of inquiry in massive open online courses. Computers & Education, 119, 44–58. https://doi.org/10.1016/j.compedu.2017.11.010
Kozan, K. (2016). The incremental predictive validity of teaching, cognitive and social presence on cognitive load. The Internet and Higher Education, 31, 11–19. https://doi.org/10.1016/j.iheduc.2016.05.003
Kozan, K., & Caskurlu, S. (2018). On the nth presence for the community of inquiry framework. Computers & Education, 122, 104–118. https://doi.org/10.1016/j.compedu.2018.03.010
Kozan, K., & Richardson, J. C. (2014). New exploratory and confirmatory factor analysis insights into the community of inquiry survey. The Internet and Higher Education, 23, 39–47. https://doi.org/10.1016/j.iheduc.2014.06.002
Ma, Z., Wang, J., Wang, Q., Kong, L., Wu, Y., & Yang, H. (2017). Verifying causal relationships among the presences of the community of inquiry framework in the Chinese context. International Review of Research in Open and Distributed Learning, 18(6). https://doi.org/10.19173/irrodl.v18i6.3197
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. https://doi.org/10.1037/1082-989X.1.2.130
Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159–168. https://doi.org/10.1207/s15327574ijt0502_4
Olpak, Y. Z., & Kiliç Çakmak, E. (2016). Examining the reliability and validity of a Turkish version of the community of inquiry survey. Online Learning, 22(1), 147–161. http://dx.doi.org/10.24059/olj.v22i1.990
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667–696. https://doi.org/10.1080/00273171.2012.715555
Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559. https://doi.org/10.1080/00223891.2010.496477
Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(1), 19–31. https://doi.org/10.1007/s11136-007-9183-7
Rockinson-Szapkiw, A., Wendt, J., Whighting, M., & Nisbet, D. (2016). The predictive relationship among the community of inquiry framework, perceived learning and online, and graduate students’ course grades in online synchronous and asynchronous courses. International Review of Research in Open and Distributed Learning, 17(3). https://doi.org/10.19173/irrodl.v17i3.2203
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016a). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223–237. https://doi.org/10.1080/00223891.2015.1089249
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016b). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21(2), 137–150. https://doi.org/10.1037/met0000045
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
Shea, P., & Bidjerano, T. (2009). Community of inquiry as a theoretical framework to foster “epistemic engagement” and “cognitive presence” in online education. Computers & Education, 52, 543–553. https://doi.org/10.1016/j.compedu.2008.10.007
Shea, P., & Bidjerano, T. (2010). Learning presence: Towards a theory of self-efficacy, self-regulation, and the development of a communities of inquiry in online and blended learning environments. Computers & Education, 55(4), 1721–1731. https://doi.org/10.1016/j.compedu.2010.07.017
Stenbom, S. (2018). A systematic review of the community of inquiry survey. The Internet and Higher Education, 39, 22–32. https://doi.org/10.1016/j.iheduc.2018.06.001
Swan, K., & Ice, P. (2010). The community of inquiry framework 10 years later: Introduction to the special issue. The Internet and Higher Education, 13(1–2), 1–4. http://dx.doi.org/10.1016/j.iheduc.2009.11.003
Swan, K. P., Richardson, J. C., Ice, P., Garrison, D. R., Cleveland-Innes, M., & Arbaugh, J. B. (2008). Validating a measurement tool of presence in online communities of inquiry. E-mentor, 2(24), 1–12. http://www.e-mentor.edu.pl/_xml/wydania/24/543.pdf
West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 209–231). Guilford Press.
Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. https://doi.org/10.3758/s13428-018-1055-2
Yu, T., & Richardson, J. C. (2015). Examining reliability and validity of a Korean version of the community of inquiry instrument using exploratory and confirmatory factor analysis. The Internet and Higher Education, 25, 45–52. https://doi.org/10.1016/j.iheduc.2014.12.004
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International Licence. The copyright of all content published in IRRODL is retained by the authors.
This copyright agreement and use license ensures, among other things, that an article will be as widely distributed as possible and that the article can be included in any scientific and/or scholarly archive.
You are free to
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms below:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.