Understanding Participant’s Behaviour in Massively Open Online Courses
DOI:
https://doi.org/10.19173/irrodl.v20i1.3709Keywords:
Distance Education, MOOCs, Open Learning, participant profiles, survival analysis, behavioural engagement, cluster analysisAbstract
As the offer of Massive Open Online Courses (MOOCs) continues to grow around the world, a great deal of MOOC research has focused on their low success rates and used indicators that might be more appropriate for traditional degree-seeking students than for MOOC learners, who, because of the openness of MOOCs, represent a more diverse clientele who exhibit different characteristics and behaviours. In this study, conducted in a French MOOC that is part of the EDUlib initiative, we systematically classified MOOC user profiles based on their behaviour in the open-source learning management system (LMS) — in this case, Sakai — and studied their survival in the MOOC. After formatting the logs in ordinal variables in order to reflect a continuum of participation central to the behavioural engagement concept (Fredricks, Blumenfeld, & Paris, 2004), we incrementally executed a two-step cluster analysis procedure that led us to identify five different user profiles, after having manually excluded Ghots : Browser, Self-Assessor, Serious Reader, Active-Independent, and Active-Social. These five profiles differed both qualitatively and quantitatively on the continuum of engagement, and a significant proportion of the less active profiles did not drop out of the MOOC. Our results confirm the importance of social behaviours, as in recent typologies, but also point out a new Self-Assessor category. The implications of these profiles for MOOC design are discussed.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International Licence. The copyright of all content published in IRRODL is retained by the authors.
This copyright agreement and use license ensures, among other things, that an article will be as widely distributed as possible and that the article can be included in any scientific and/or scholarly archive.
You are free to
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms below:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.